Hilbert modular
WebSTRATIFICATIONS OF HILBERT MODULAR VARIETIES E. Z. GOREN AND F. OORT Abstract. We consider g-dimensional abelian varieties in characteristic p, with a given action of O L- the ring of integers of a totally real eld Lof degree g. A strati cation of the associated moduli spaces is de ned by considering the action of O WebA Hilbert modular variety Σ = Hg/Γ is a quotient of Hg by a lattice Γ ⊂ SL2(K). A typical example is provided by Γ = SL2(OK), where OK is the ring of integers in K. These varieties arise naturally in connection with real multiplication, as follows.
Hilbert modular
Did you know?
WebThe foliated Hilbert modular surface (XD,FD) presents a similar struc-ture, with the fibration p : X → V replaced by the holomorphic foliation AD coming from the level sets of τ 1 on … Webon the Hilbert modular case. Finally, we remark that there is a rather different method to compute the Hecke action on Hilbert modular forms using the Jacquet–Langlands correspon-dence. For details we refer to work of L. Demb´el´e [14,15]. However, the Jacquet– Langlands technique works only with the complex cohomology of subgroups of …
WebThe quotient of the Hilbert modular group by its level 2 congruence subgroup is isomorphic to the alternating group of order 60 on 5 points. Like all nonsingular cubic surfaces, the Clebsch cubic can be obtained by blowing up the projective planein 6 points. Klein (1873)described these points as follows. Web1 Hilbert modular surfaces In this section we give a brief introduction to Hilbert modular surfaces associated to real quadratic fields. For details we refer to [Fr], [Ga], [Ge1], [Go]. …
Webthe modular curve into the Hilbert modular sur-face. We have SL2(Z) ,→ SL2(O F) and h,→ h × h giving rise to SL2(Z)\h,→ SL2(O F)\(h × h). More generally, we can work with a congruence subgroup. The projection of these cycles to each π component produces a Tate class in each IH2(π) for which πis a lift. Embedding the modular curve ... WebOutlineTorus embeddingsHilbert modular varieties and their boundary componentsToroidal compacti cation analytic theoryAlgebraic theory Toroidal compacti cations of Hilbert …
WebRemark 11. As the name suggests, Hilbert modular forms are connected to Hilbert modular sur-faces. Analogously to the case of modular curves, Hilbert modular forms are related to di erential forms on the Hilbert modular surface. The only complications arise from being careful about the behavior at the singularities [10, I.6, III.3].
WebMotivated by the above discussion, for the rest of the introduction, we use the symbol fto denote a Hilbert modular form (for F) of weight (k;2), and discuss in turn the two periods that one can attach to such an fthat capture the transcendental 6 part of critical values of the Asai L-function of f. high stool table and chairsWebHilbert Modular Forms and Their Applications Jan Hendrik Bruinier Chapter 6137 Accesses 7 Citations Part of the Universitext book series (UTX) Abstract The present notes contain the material of the lectures given by the author at the summer school on “Modular Forms and their Applications” at the Sophus Lie Conference Center in the summer of 2004. how many days till august 10 2030WebFoliations of Hilbert modular surfaces Curtis T. McMullen∗ 21 February, 2005 Abstract The Hilbert modular surface XD is the moduli space of Abelian varieties A with real multiplication by a quadratic order of discriminant D > 1. The locus where A is a product of elliptic curves determines a finite union of algebraic curves XD(1) ⊂ XD. high stool with armshttp://modularhomesofncsales.com/PLANS.html how many days till aug 5 2023In mathematics, a Hilbert modular form is a generalization of modular forms to functions of two or more variables. It is a (complex) analytic function on the m-fold product of upper half-planes $${\displaystyle {\mathcal {H}}}$$ satisfying a certain kind of functional equation. See more These modular forms, for real quadratic fields, were first treated in the 1901 Göttingen University Habilitationssschrift of Otto Blumenthal. There he mentions that David Hilbert had considered them initially in work from 1893-4, … See more • Siegel modular form • Hilbert modular surface See more how many days till aug 5thWebDec 23, 2024 · In mathematics, a Hilbert modular surface or Hilbert–Blumenthal surface is one of the surfaces obtained by taking a quotient of a product of two copies of the upper … how many days till august 11 2022WebThe moduli spaces of such abelian surfaces are Hilbert modular surfaces. Since the moduli spaces of polarized complex abelian varieties are Siegel modular varieties we find natural maps of Hilbert modular surfaces to Siegel modular threefolds. high stool for office